accuracy module¶
The surprise.accuracy
module provides tools for computing accuracy
metrics on a set of predictions.
Available accuracy metrics:
Compute RMSE (Root Mean Squared Error). |
|
Compute MSE (Mean Squared Error). |
|
Compute MAE (Mean Absolute Error). |
|
Compute FCP (Fraction of Concordant Pairs). |
- surprise.accuracy.fcp(predictions, verbose=True)[source]¶
Compute FCP (Fraction of Concordant Pairs).
Computed as described in paper Collaborative Filtering on Ordinal User Feedback by Koren and Sill, section 5.2.
- Parameters:
predictions (
list
ofPrediction
) – A list of predictions, as returned by thetest()
method.verbose – If True, will print computed value. Default is
True
.
- Returns:
The Fraction of Concordant Pairs.
- Raises:
ValueError – When
predictions
is empty.
- surprise.accuracy.mae(predictions, verbose=True)[source]¶
Compute MAE (Mean Absolute Error).
\[\text{MAE} = \frac{1}{|\hat{R}|} \sum_{\hat{r}_{ui} \in \hat{R}}|r_{ui} - \hat{r}_{ui}|\]- Parameters:
predictions (
list
ofPrediction
) – A list of predictions, as returned by thetest()
method.verbose – If True, will print computed value. Default is
True
.
- Returns:
The Mean Absolute Error of predictions.
- Raises:
ValueError – When
predictions
is empty.
- surprise.accuracy.mse(predictions, verbose=True)[source]¶
Compute MSE (Mean Squared Error).
\[\text{MSE} = \frac{1}{|\hat{R}|} \sum_{\hat{r}_{ui} \in \hat{R}}(r_{ui} - \hat{r}_{ui})^2.\]- Parameters:
predictions (
list
ofPrediction
) – A list of predictions, as returned by thetest()
method.verbose – If True, will print computed value. Default is
True
.
- Returns:
The Mean Squared Error of predictions.
- Raises:
ValueError – When
predictions
is empty.
- surprise.accuracy.rmse(predictions, verbose=True)[source]¶
Compute RMSE (Root Mean Squared Error).
\[\text{RMSE} = \sqrt{\frac{1}{|\hat{R}|} \sum_{\hat{r}_{ui} \in \hat{R}}(r_{ui} - \hat{r}_{ui})^2}.\]- Parameters:
predictions (
list
ofPrediction
) – A list of predictions, as returned by thetest()
method.verbose – If True, will print computed value. Default is
True
.
- Returns:
The Root Mean Squared Error of predictions.
- Raises:
ValueError – When
predictions
is empty.