Source code for surprise.prediction_algorithms.baseline_only

"""
This class implements the baseline estimation.
"""

from .algo_base import AlgoBase


[docs] class BaselineOnly(AlgoBase): r"""Algorithm predicting the baseline estimate for given user and item. :math:`\hat{r}_{ui} = b_{ui} = \mu + b_u + b_i` If user :math:`u` is unknown, then the bias :math:`b_u` is assumed to be zero. The same applies for item :math:`i` with :math:`b_i`. See section 2.1 of :cite:`Koren:2010` for details. Args: bsl_options(dict): A dictionary of options for the baseline estimates computation. See :ref:`baseline_estimates_configuration` for accepted options. verbose(bool): Whether to print trace messages of bias estimation, similarity, etc. Default is True. """ def __init__(self, bsl_options={}, verbose=True): AlgoBase.__init__(self, bsl_options=bsl_options) self.verbose = verbose def fit(self, trainset): AlgoBase.fit(self, trainset) self.bu, self.bi = self.compute_baselines() return self def estimate(self, u, i): est = self.trainset.global_mean if self.trainset.knows_user(u): est += self.bu[u] if self.trainset.knows_item(i): est += self.bi[i] return est