Basic algorithms¶
These are basic algorithm that do not do much work but that are still useful for comparing accuracies.

class
surprise.prediction_algorithms.random_pred.
NormalPredictor
¶ Bases:
surprise.prediction_algorithms.algo_base.AlgoBase
Algorithm predicting a random rating based on the distribution of the training set, which is assumed to be normal.
The prediction \(\hat{r}_{ui}\) is generated from a normal distribution \(\mathcal{N}(\hat{\mu}, \hat{\sigma}^2)\) where \(\hat{\mu}\) and \(\hat{\sigma}\) are estimated from the training data using Maximum Likelihood Estimation:
\[\begin{split}\hat{\mu} &= \frac{1}{R_{train}} \sum_{r_{ui} \in R_{train}} r_{ui}\\\\ \hat{\sigma} &= \sqrt{\sum_{r_{ui} \in R_{train}} \frac{(r_{ui}  \hat{\mu})^2}{R_{train}}}\end{split}\]

class
surprise.prediction_algorithms.baseline_only.
BaselineOnly
(bsl_options={})¶ Bases:
surprise.prediction_algorithms.algo_base.AlgoBase
Algorithm predicting the baseline estimate for given user and item.
\(\hat{r}_{ui} = b_{ui} = \mu + b_u + b_i\)
If user \(u\) is unknown, then the bias \(b_u\) is assumed to be zero. The same applies for item \(i\) with \(b_u\).
See section 2.1 of [Kor10] for details.
Parameters: bsl_options (dict) – A dictionary of options for the baseline estimates computation. See Baselines estimates configuration for accepted options.